Functionalized Graphene Sheets As Immobilization Matrix for Fenugreek β-Amylase: Enzyme Kinetics and Stability Studies
نویسندگان
چکیده
β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM) and Fourier Tansform Infrared (FTIR) spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries.
منابع مشابه
α-Amylase immobilization onto functionalized graphene nanosheets as scaffolds: Its characterization, kinetics and potential applications in starch based industries
α-Amylase is imperative for starch and its deriviatized industries. Functionalized graphene sheets were tailored and optimized as scaffold for α-amylase immobilization using Response Surface Methodology based on Box-Behnken design, with an overall immobilization efficiency of 85.16%. Analysis of variance provided adequacy to the mathematical model for further studies. Native and immobilized fun...
متن کاملImmobilization of β-Galactosidase onto Functionalized Graphene Nano-sheets Using Response Surface Methodology and Its Analytical Applications
BACKGROUND β-Galactosidase is a vital enzyme with diverse application in molecular biology and industries. It was covalently attached onto functionalized graphene nano-sheets for various analytical applications based on lactose reduction. METHODOLOGY/PRINCIPAL FINDINGS Response surface methodology based on Box-Behnken design of experiment was used for determination of optimal immobilization c...
متن کاملInfluence of a Novel Magnetic Recoverable Support on Kinetic, Stability and Activity of Beta-amylase Enzyme
In this paper, covalent immobilization of beta amylase enzyme on the surface of modified magnetic nano particles (ZnFe2O4@SiO2-NH2) is reported. For doing so, at first, the magnetic nanoparticles of ZnFe2O4 were synthesized by chemical co-precipitation method and then tetraethyl orthosilicate (TEOS) and 3-aminopropyltriethoxy sil...
متن کاملStability Improvement of Immobilized a-amylase using Nano Pore Zeolite
Background: Enzyme engineering by immobilization techniques has proven to be well compatible with the other chemical or biological approaches aiming to improve enzyme’s functions and stability. Zeolites are porous alumino-silicates with a wide range of porosity and particle size along with the other remarkable properties such as high surface area, high stability against a wide range temperature...
متن کاملΒ-Amylase from Starchless Seeds of Trigonella Foenum-Graecum and Its Localization in Germinating Seeds
Fenugreek (Trigonella foenum-graecum) seeds do not contain starch as carbohydrate reserve. Synthesis of starch is initiated after germination. A β-amylase from ungerminated fenugreek seeds was purified to apparent electrophoretic homogeneity. The enzyme was purified 210 fold with specific activity of 732.59 units/mg. Mr of the denatured enzyme as determined from SDS-PAGE was 58 kD while that of...
متن کامل